|
| |
Department of Chemistry
Phone: (702) 895-3753 Fax: (702) 895-4072 Email: Paul Forster@unlv.edu
|
|
|
Research
Program
Materials Discovery represents the heart of our research
program. Throughout history,
the importance of new materials is so pivotal that periods are often
classified by their utilization (Stone age,
Bronze age, Iron age…). New materials, and improved versions of existing
ones, are still at the heart of technological advancement. We specifically seek to discover
new materials with nanoporosity, meaning the
presence of an ordered array of accessible cavities allow small molecules
to reversibly enter and exit particles of our materials. Of particular interest are
materials where the pores are active towards specific molecules as can
occur when accessible transition metal sites are present and accessible to
the cavity. An example of
such a nanoporous material, nickel succinate, is illustrated
below. Figure 1:
Nickel succinate displays a honeycomb array of pores lined by the
hydrophobic portion of the organic building block. Hydrogen Storage has been identified as a key obstacle
that must be overcome in order for hydrogen to become a practical fuel by
the Department of Energy. The
challenge of developing a material that can store hydrogen reversibly,
safely, and economically offers an important goal toward which to direct
our efforts. Although many
nanoporous material have currently been studied for hydrogen uptake, the
major obstacle is that their surfaces do not interact sufficiently with
hydrogen for them to work at room temperature. Our goal is to synthesize materials
containing significant numbers of coordinatively unsaturated metal centers
capable of interacting with hydrogen sufficiently for ambient temperature
applications. Related to this
are ongoing projects to study the fundamental interaction between hydrogen
molecules and surfaces through a combination of gas sorption, temperature
programmed desorption, and inelastic neutron scattering studies. Our characterization work will
include both materials made within the Forster group as well as
collaborative studies of important materials made by our
collaborators. Figure 2:
Inelastic neutron spectra used to characterize an interaction
between hydrogen molecules and Ni(II) sites in a
sodium nickel 5-sulfoisophthalate material.
Figure 3:
A new molecule containing a rare Tc-Tc
triple bond, recently prepared by Frederic Poineau. The structure was determined by
Prof. Forster in Mar., 2008. Systematic Synthesis Studies: An important aspect of synthesis is understanding how reaction variables determine which
possible products might form. However, for the formation of
materials involving both inorganic and organic building blocks under
hydrothermal conditions, very little systematic work has currently been
published on the subject. The
figure below shows some of Prof. Forster’s previous work with the variable
of temperature, demonstrating that a simple reaction could be used to
produce five different cobalt succinate materials using temperature as the
only adjustable parameter.
This work was later applied to multiple variables in this system
using high throughput hydrothermal methods to produce a crystallization
diagram for this system.
Future work will examine different variables and study how well the
observations from cobalt succinate may be applied to new systems. Knowledge gained from this area
will be used to refine our efforts at materials
discovery. Figure
4: Five different cobalt
succinate structures that can be produced from one specific reaction by
adjusting the reaction temperature Figure
5: A crystallization map for
the cobalt succinate system for the reaction variables of temperature and
pH. Structure Elucidation is the most important method by which
our group characterizes new materials. Our primary tool, single crystal
x-ray diffraction, is a powerful technique to precisely determine the
arrangement of atoms for a new compound. While this method has become
routine for many cases, some new materials present unique challenges such
as disorder, twinned or low quality crystals, or crystals too small for
conventional laboratory diffractometers. Consequently, we use synchrotron
microcrystal diffraction to determine the structures of materials that
cannot be solved in the laboratory.
Structure determination is performed both on materials synthesized
within our group as well as on materials provided by collaborators. We currently have programmatic
access to the Advanced Light Source (sector 11.3.1) in Figure
6: a: A Bruker Apex II single crystal diffractometer, as used
by our group for routine structure solution. b: The Advanced Light
Source in
|
| |
Education and Research Experience Ph.D., Materials Science –
Advisor: Anthony K. Cheetham. B.S. – Chemistry, Honors Scholar, Summa cum Laude
– Advisor: A. W. Sleight. - Assistant Professor, Department of Chemistry, - Postdoctoral Research Associate - Prof. John B. Parise, Department of Geosciences, Stony Brook
University - 3/2005 to 12/2007 -Graduate Researcher-
Prof. Anthony K. Cheetham, Department of Materials,
-Undergraduate Researcher -
Prof. Arthur W. Sleight, Department of Chemistry, - 6/1997-8/1998 and Prof. Kenneth M. Doxsee, Department of Chemistry,
|
| |
Teaching
|
| |
Most
Significant Publications: A complete list (currently 25) may be found on my CV. This list is intended as an aid to those interested in learning more about my research and is presented in order of my preference for them. 1. “The Role of Temperature in the Synthesis of Hybrid Inorganic-Organic Materials: The Example of Cobalt Succinates” P. M. Forster, A. R. Burbank, C. Livage, G. Férey, A. K. Cheetham, Chem. Commun., 2004, 368.
2. “Adsorption of Molecular Hydrogen on Coordinatively Unsaturated Ni(II) Sites in a Nanoporous Hybrid Material” P. M. Forster, J. Eckert, B. D. Heiken, J. B. Parise, J. W. Yoon, S. H. Jhung, J. Am. Chem. Soc., 2006, 128, 16846. 3. “Hydrogen Adsorption in Nanoporous Nickel(II) Phosphates” P. M. Forster, J. Eckert, J.-S. Chang, S.-E. Park, G. Férey, A. K. Cheetham, J. Am. Chem. Soc., 2003, 125, 1309.
4. “A High-Throughput Investigation of the Role of pH, Temperature, Concentration, and Time on the Synthesis of Hybrid Inorganic-Organic Materials” P. M. Forster, N. Stock, A. K. Cheetham, Angew. Chem. Int. Ed., 2005, 44, 7608. 5. “Open-Framework Nickel Succinate: A New Hybrid Material with Three-Dimensional Ni-O-Ni Connectivity” P. M. Forster, A. K. Cheetham, Angew. Chemie Int. Ed., 2002, 41, 457. 6. “Hybrid Inorganic-Organic Solids: An Emerging Class of Nanoporous Catalysts” P. M. Forster, A. K. Cheetham, Top. Catal., 2003, 24, 79. 7. “Effect of Mixing of Metallic Cation on the Topology of Metal-Oxide Networks” C. Livage, P. M. Forster, N. Guillou, M. M. Tafoya, A. K. Cheetham, G. Férey, Angew. Chem. Int. Ed., 2007, 46, 5887. 8. “Biphasic Solvothermal Synthesis: A New Approach for Hybrid Inorganic-Organic Materials” P. M. Forster, P. M. Thomas, A. K. Cheetham, Chem. Mater., 2002, 14, 17. 9. “Nickel(II) Phosphate VSB-5: A Magnetic Nanaporous Hydrogenation Catalyst with 24-Ring Tunnels” N. Guillou, Q. Gao, P. M. Forster, J.-S. Chang, M. Noguès, S.-E. Park, G. Férey, A. K. Cheetham, Angew. Chem. Int. Ed., 2001, 40, 2831. 10. “A Thermally Stable Nanoporous Nickel 5-Sulfoisophthalate; Crystal Structure and Adsorption Properties” D. S. Kim, P. M. Forster, R. Le Toquin, A. K. Cheetham, Chem. Commun., 2004, 2148. Last updated: March, 2008 |
| |